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Abstract 
 
 

Statistical entropy  is a measure of dispersion or spread of a random variable. 
Especially when the random variable is nominal, classical measures of dispersion like 
standard deviation can not be computed. In such cases, measures of variation, 
including entropy-based statistics;computed by using cell frequencies of a 
distributionmust be used.  The asymptotic properties of entropy statistics  have long 
been studied in literature. Relative entropy plays an important role in evaluating the 
degree of fit.  In other words, relative entropy is a measure of goodness fit of an 
empirical distribution to a theoretical or hypothesized distribution.  In this study for 
some frequently-used probability distributions,some relative entropy measures are 
derived by exploiting additivity property of Kullback-Leibler divergence and Jeffreys 
divergence. Their asymptotic properties under certain assumptions have been 
discussed. In the end, by some applications, the close relation between relative 
entropy statistics and other classical test statistics have been emphasized. 
 

 
Keywords: Relative entropy, Kullback-Leibler divergence, Jeffreys divergence, 
mutual information, asymptotic properties of relative entropy 

 
Introduction 
 

Statistical  entropy can be evaluated as  ameasure of unpredictability of the 
outcome  of a statistical experiment.  The more predictable the outcome of an 
experiment, the less will be the uncertainty and soforth the entropy. After the 
experiment (or observation ) is carried out, the uncertainty is not present. So in some 
sense, entropy is a measure of information that one can get through statistical 
experimentation (Renyi, p23). 
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 Among various entropy measures proposed in literature, Shannon, Rényi and 
Tsallis entropies gained popularity recently. Yet, Shannon entropy; as the limiting 
form of Rényi and Tsallis entropies;may be the most outstanding or privileged one 
due to the simplicity it provides for further mathematical work. For a general 
discussion of basic concepts and applications of entropy, one may refer to Khinchin 
(1957), Reza(1994), Ullah (1996) and  Cover & Thomas (2006). 
 
1. Entropy for discrete cases 

 
Let the discrete random variable X takes on the values  ݔଵ, ,ଶݔ …  ௄ withݔ,

respective probabilities  ݌ଵ,݌ଶ, … ௄݌,  on some sample space S.  Shannon entropy is 
defined as   

 
ܪ = −∑ ௜௄݌݃݋௜݈݌

௜ୀଵ (1.1)  
 
For practical considerations it is customary to take the base of the logarithm as 

2. So the entropy of X can be evaluated as the minimum average number of bits 
required to represent the outcome X ( Garcia, p169 ). 
 
2.  Bivariate Distributions 

 
 Computing the entropies of bivariate distributions are straight forward. Let 

the random variables X and Y assume the values ݔଵ,ݔଶ, … , ,ଶݕ,ଵݕ ݀݊ܽ  ௡ݔ … ,  ௠ݕ
correspondingly. The joint probability function is ௑ܲ,௒(ݔ,  For simplicity, we .(ݕ
assume that both of the random variables are discrete. Then the Shannon entropy of 
this joint probabilistic scheme is  

 
(ܻ,ܺ)ܪ = −∑ ∑ ௑ܲ,௒൫ݔ௜,ݕ௝൯݈݃݋௠

௝ୀଵ
௡
௜ୀଵ ௑ܲ,௒൫ݔ௜,ݕ௝൯(2.1) 

 
If X and Y are independent, 
 
(ܻ,ܺ)ܪ = (ܺ)ܪ +  (2.2) (ܻ)ܪ
 
Stating that the joint Shannon entropy of two independently distributed 

random variables is merely the sum of marginal entropies. The extension to  n 
independently  distributed random variables ଵܺ,ܺଶ, … ,ܺ௡is also simple:  
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)ܪ ଵܺ,ܺଶ, … ,ܺ௡) = ∑ )ܪ ௜ܺ)௡
௜ୀଵ (2.3) 

 
This property is also known as the additivity property of Shannon entropy for 

independent random variables.For dependent variables, 
 
(ܻ,ܺ)ܪ = −∑ ∑ ௑ܲ(ݔ௜) ௒ܲ൫ݕ௝/ݔ௜൯݈݃݋ ௑ܲ(ݔ௜) ௒ܲ൫ݕ௝/ݔ௜൯௠

௝ୀଵ
௡
௜ୀଵ (2.4) 

 
 Here ௒ܲ൫ݕ௝/ݔ௜൯represents the conditional probability of ܻ = ܺ ௝givenݕ =  .௜ݔ

Manipulating algebraically a little bit yields   
 
(ܻ,ܺ)ܪ = (ܺ)ܪ +  (2.5)(ܺ/ܻ)ܪ
 
since 
 
(௜ݔ/ܻ)ܪ = −∑ ௒ܲ൫ݕ௝/ݔ௜൯(݈݃݋ ௒ܲ൫ݕ௝/ݔ௜൯௠

௝ୀଵ (2.6) 
 
and 
 
(ܺ/ܻ)ܪ = ∑ ௑ܲ(ݔ௜)ܪ(ܻ/ݔ௜)௡

௜ୀଵ          (2.7) 
 
represent conditional entropy of Y (given =  ௜ ) and average conditionalݔ

entropy of Y, respectively. In this case joint entropy is the sum of the entropy of a 
marginal distribution and the average conditional entropy. This situation implies 
additivity in terms of marginal and conditional entropies. 
 
3. A measure for mutual information 

 
Suppose the following statistic is defined as  
 

൫ܺܫ = ܻ,௜ݔ = ௝൯ݕ = ݃݋݈ ௉(௫೔,௬ೕ)
௉(௫೔)௉(௬ೕ)

(3.1)  

 
It is possible to evaluate this measure as the amount of information that the 

event  
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ܺ = ܻ ௜conveys about the eventݔ =  ௝. Note that if these two events areݕ
independent then this quantity will necessarily be zero.  Yet an average measure that 
the random variable X conveys about Y may be more convenient. The measure 
proposed by Shannon for this purpose  is 

 

(ܻ,ܺ)ܫ = ∑ ∑ ݃݋݈(௝ݕ,௜ݔ)ܲ ௉(௫೔,௬ೕ)
௉(௫೔)௉(௬ೕ)

௠
௝ୀଵ

௡
௜ୀଵ (3.2)  

 
This quantity is called mutual information or relative entropy. Note that for 

independent random variables this quantity is zero as expected a priori.   The 
following equations can be derived for the relations between mutual information and 
various  entropy measures:  

 
(ܻ,ܺ)ܫ = (ܺ)ܪ + (ܻ)ܪ   (3.3)(ܻ,ܺ)ܪ−
(ܻ,ܺ)ܫ = (ܺ)ܪ  (3.4)(ܻ/ܺ)ܪ−
(ܻ,ܺ)ܫ = (ܻ)ܪ −    (3.5)(ܺ/ܻ)ܪ
 
Whenever  X and Y are independent,average conditional entropies are simply 

equal to marginal entropies. Therefore mutual information will be zero. On the 
contrary, when X and Y are dependent, marginal entropies will be equal to joint 
entropy. For this reason, for this example,  mutual information is equal to joint 
entropy. Although the minimum value that mutual information can take is 0, it does 
not seem to have an upper bound all the time. Especially when the two variables are 
dependent, mutual information can be infinitely large. Hence some modifications to  
mutual information  are proposed  which are as follows:  

 

(ܻ,ܺ)ଵܥ = ூ(௑,௒)
ு(௒)

(3.6)    

(ܻ,ܺ)ଶܥ = ூ(௑,௒)
ு(௑)

(3.7) 

(ܻ,ܺ)ଷܥ = 1− ு(௒/௑)
ு(௒)

(3.8)  

(ܻ,ܺ)ସܥ = 1− ு(௑/௒)
ு(௑)

   (3.9)                                                                                               

 
(3.6) and (3.7)   and similarly (3.8) and (3.9)  are not necessarily equal. A 

symmetric one is 
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ܴ(ܺ,ܻ) = ூ(௑,௒)
ு(௑)ାு(௒)

(3.10) 

 
 Here R is the coefficient of redundancy. Whenever two variables are 

independent, R is zero. Whenever they are totally dependent, R is equal to ½ implying 
that the one of the variables is redundant to analyse uncertainty. 
 
3.1. Mutual Information in bivariate normal distribution  

 
Suppose  (ܺ,ܻ) fits a bivariate normal distribution. The entropy of this joint 

distribution can be found as  
 
(ܻ,ܺ)ܪ = ln (2ߪߨ௑ߪ௒݁ඥ1 −  ଶ)              (3.1.1)ߩ
 
The marginal entropies of X and Y are as below: 
 
(ܺ)ܪ = ln (ߪ௑√2݁ߨ)  (3.1.2) 
(ܻ)ܪ = ln (ߪ௒√2݁ߨ)(3.1.3)                                                                                  
 
Similarly, the mutual information is 
 
(ܻ,ܺ)ܫ = − ଵ

ଶ
ln (1−  ଶ)(3.1.4)ߩ

 
It is interesting to see that if the correlation coefficient is zero, mutual 

information is also zero. In addition, as the absolute value of correlation coefficient 
increases, the amount of mutual information increases as can be expected intuitively. 
 
3.2. Kullback-Leibler information and relative entropy  

 
  Relative entropy is a measure of divergence between two distributions. For 

discrete cases relative entropy or Kullback-Leibler divergence between p and q is 
defined as  

 

݌)௄௅ܦ ∥ (ݍ = ݃݋݈݌∑ ቀ௣
௤
ቁ(3.2.1) 
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Note that for continuous distributions summation operator in (3.2.1) is simply 
replaced by integration operator.At the first sight, it may seem strange to qualify both 
of  the measures defined in (3.2) and (3.2.1) as “relative entropy”. But relative entropy 
can also be viewed as the divergence between two hypotheses;ܪ଴and ܪଵ. To be more 
specific for (3.2), the null hypothesis is for the independence of two variables, and 
hence the null and the alternative hypotheses are 

 
:଴ܪ ௑ܲ,௒(ݕ,ݔ) = ௑ܲ(ݔ) ௒ܲ(ݕ)݂ݔ) ݈݈ܽ ݎ݋, (ݕ ∈ ℛଶ 

 
:ଵܪ ௑ܲ,௒(ݔ, (ݕ ≠ ௑ܲ(ݔ) ௒ܲ(ݕ) 
 
For (3.2.1),by  the same reasoning, they are 
 
 ݌ ݏ݅ ݊݋݅ݐܿ݊ݑ݂ ݕݐ݈ܾܾ݅݅ܽ݋ݎ݌ ଴:ܶℎ݁ܪ

 
ݍ ݏ݅ ݊݋݅ݐܿ݊ݑ݂ ݕݐ݈ܾܾ݅݅ܽ݋ݎ݌ ଵ:ܶℎ݁ܪ ≠  ݌

 
For the first formulation given above, we can alternatively state that 

(ܻ,ܺ)ܫ = ௄௅ܦ ቀ ௑ܲ,௒(ݔ, (ݕ ∥ ௑ܲ(ݔ) ௒ܲ(ݕ)ቁ.  
Mutual information is the Kullback-Leibler divergence between a joint distribution 
and a hypothesized joint distribution under independence assumption.  For the 
second expression, q may often be any empirical distribution derived or formulated 
from p by sampling. In that case, relative entropy is a statistical tool for checking 
goodness of fit. 

 
The reason for using the term “divergence” rather than “distance” is that 

Kullback-Leibler measure is neither symmetric nor obeys triangle  inequality. 
Therefore  Kullback-Leibler measure is not a metric function.   It can also be stated 
that relative entropy is a special case of Rényi divergence (Ullah, p146).Rényi’s order-
alpha divergence of q from p is defined as  

 

݌)ோܦ ∥ (ݍ = ଵ
ఈିଵ

∑݃݋݈ ௣ഀ

௤ഀషభ
(3.2.2) 

 

Note that if   p is equal to q, this quantity is equal to zero. When   ߙ → 1 
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lim
ఈ→ଵ

1
ߙ − 1 ෍݃݋݈

ఈ݌

ఈିଵݍ =
0
0 

 
By L’Hospital’s rule 

limఈ→ଵ ோܦ ݌) ∥ (ݍ = limఈ→ଵ

೏
೏ഀ൬௟௢௚ ∑

೛ഀ

೜ഀషభ
൰

೏
೏ഀ(ఈିଵ)

݌݃݋݈݌)∑= − (ݍ݃݋݈݌ ݌)௄௅ܦ= ∥  (3.2.3) (ݍ

 
3.3. Jeffreys Divergence as a symmetric version of Kullback-Leibler divergence.  

 
Another statistic which is closely-related to mutual information is Jeffreys 

divergence. It  is a symmetrical version of Kullback-Leibler divergence and  defined as  
follows: 

 
݌)௃ܦ ∥ (ݍ = ݌)௄௅ܦ ∥ ݍ)௄௅ܦ+(ݍ ∥  (3.3.1)(݌
 
For two discrete probability distributions p and q, it is defined as 
 

݌)௃ܦ ∥ (ݍ = ݌)∑ − ቀ௣݃݋݈(ݍ
௤
ቁ(3.3.2) 

 
Jeffreys divergence does not satisfy the conditions of being a  metric function 

either.Itdoes not fulfill the condition of triangle inequality( Kullback,p6). 
 
3.4. Kullback-Leibler and Jeffreys Divergences for some selected probability 
distributions 
 

Some Kullback-Leibler and Jeffreys measures for some frequently-used 
probability distributions can directly be derived from  (3.2.1) and (3.3.2). They  are as 
follows: 

1)For two Bernoulli distributions having parameters ݌ଵ  and ݌ଶ  respectively, 
 

݌)௄௅ܦ ∥ (ݍ = (1 − ݃݋݈(ଵ݌ ቂ(ଵି௣భ)
(ଵି௣మ)

ቃ + ݃݋ଵ݈݌ ቂ
௣భ
௣మ
ቃ(3.4.1) 

 

݌)௃ܦ ∥ (ݍ = ଵ݌) − (ଶ݌ ቂ݈݃݋ ቀଵି௣మ
௣మ

ቁ − ݃݋݈ ቀଵି௣భ
௣భ

ቁቃ(3.4.2) 
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2)For two binomial distributions having parameters n(common)  and  ݌ଵ  and ݌ଶ, 
 

݌)௄௅ܦ ∥ (ݍ = ݊ ቈ(1 − ݃݋݈(ଵ݌ ቂ(ଵି௣భ)
(ଵି௣మ)ቃ+ ݃݋ଵ݈݌ ቂ

௣భ
௣మ
ቃ቉(3.4.3) 

݌)௃ܦ ∥ (ݍ = ݊ ቈ(݌ଵ − (ଶ݌ ቂ݈݃݋ ቀଵି௣మ
௣మ

ቁ − ݃݋݈ ቀଵି௣భ
௣భ

ቁቃ቉(3.4.4) 

 
Here it should be noted that mutual information (Kullback-Leibler measure) 

and Jeffreys measure are additive for independent observations (Kullback, pp 12-26). 
For this reason (3.4.3) and (3.4.4) are simply formulated by multiplying the quantities 
on the right-hand sides of the equations (3.4.1) and (3.4.2) by “n”, since a binomial 
experiment consists of n independent and identical Bernoulli replicates.   
 
3) For two geometric distributions having parameters ݌ଵ  and ݌ଶ  respectively, 
 

݌)௄௅ܦ ∥ (ݍ = ቀଵି௣భ
௣భ

ቁ ݃݋݈ ቀଵି௣భ
ଵି௣మ

ቁ+ ݃݋݈ ቀ௣భ
௣మ
ቁ     (3.4.5) 

 

݌)௃ܦ ∥ (ݍ = ቂଵି௣భ
௣భ

+ ଵି௣మ
௣మ

ቃ ݃݋݈ ቀଵି௣భ
ଵି௣మ

ቁ+ ݃݋2݈ ቀ௣భ
௣మ
ቁ              (3.4.6) 

4) For two negative binomial distributions having parameters r(common)  and  ݌ଵ  
and ݌ଶ, 
 

݌)௄௅ܦ ∥ (ݍ = ݎ ቂቀଵି௣భ
௣భ

ቁ ݃݋݈ ቀଵି௣భ
ଵି௣మ

ቁ + ݃݋݈ ቀ௣భ
௣మ
ቁቃ        (3.4.7) 

݌)௃ܦ ∥ (ݍ = ݎ ቈቂଵି௣భ
௣భ

+ ଵି௣మ
௣మ

ቃ ݃݋݈ ቀଵି௣భ
ଵି௣మ

ቁ + ݃݋2݈ ቀ௣భ
௣మ
ቁ቉             (3.4.8) 

 
Again it should be noted that (3.4.7) and (3.4.8) are formulated by multiplying 

the right-hand sides of (3.4.5) and (3.4.6) by “r”.  
 
5)For two Poisson distributions with respective parameters ߣଵ  and ߣଶ , 
 

݌)௄௅ܦ ∥ (ݍ = ଶߣ) − (ଵߣ + ݃݋ଵ݈ߣ ቀ
ఒభ
ఒమ
ቁ(3.4.9) 

݌)௃ܦ ∥ (ݍ = ଵߣ) − ݃݋݈(ଶߣ ቀఒభ
ఒమ
ቁ(3.4.10) 

 

4)For two normal distributions with parameters (ߤ௑,ߪ௑ଶ)  and (ߤ௒  (௒ଶߪ,
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)௄௅ܦ ଵ݂ ∥ ଶ݂) = ଵ
ଶ
൤2݈݊ ቀఙೊ

ఙ೉
ቁ+ ఙ೉

మ

ఙೊ
మ + ቀఓ೉ିఓೊ

ఙೊ
ቁ
ଶ
− 1൨ (3.4.11) 

)௃ܦ ଵ݂ ∥ ଶ݂) = ൫ఙ೉
మାఙೊ

మ൯
ଶఙ೉

మఙೊ
మ ௑ଶߪ)] − (௒ଶߪ + ௑ߤ) −  ௒)ଶ](3.4.12)ߤ

5) For two exponentially distributed random variables having parameters ߣଵ  and ߣଶ 

)௄௅ܦ ଵ݂ ∥ ଶ݂) = (ఒమିఒభ)
ఒభ

+ ݃݋݈ ቀఒభ
ఒమ
ቁ            (3.4.13) 

)௃ܦ ଵ݂ ∥ ଶ݂) = (ఒమିఒభ)మ

ఒమఒభ
(3.4.14) 

 
6)For two gamma distributions having the probability densities as  
 

ଵ݂(ݔ) = ఒభೝ௫ೝషభ௘షഊభೣ

୻(ఒభ)
          and  ଶ݂(ݔ) = ఒమೝ௫ೝషభ௘షഊమೣ

୻(ఒమ)
 

)௄௅ܦ ଵ݂ ∥ ଶ݂) = ݎ ቂ(ఒమିఒభ)
ఒభ

+ ݃݋݈ ቀఒభ
ఒమ
ቁቃ                  (3.4.15) 

)௃ܦ ଵ݂ ∥ ଶ݂) = ݎ (ఒమିఒభ)మ

ఒమఒభ
(3.4.16) 

 
Note too that  (3.4.15) and (3.4.16) are obtained by multiplying the 

expressions on the right-hand sides of (3.4.13) and (3.4.14) by “r”  due to the 
additivity propery of Kullback-Leibler and Jeffreys divergences for independent 
observations. 
 
3.5. Asymptotic Properties of Kullback-Leibler and Jeffreys divergences 

 
Under some regularity conditions,  based on n continuous observations from a 

population whose probability function is f,   2݊ܦ௄௅൫݂ ∥ መ݂൯ = 2݊ ݃݋෣݈(ݔ)݂∫ ௙(௫)෣

௙(௫)
    ݔ݀

fits asymptotically a chi-square distribution with k-degrees of freedom,where k is the 
number of parameters of the probability function f. መ݂ is the estimated probability 
density function based on sample information. Or   as a matter of choice,  one can use 
the test statistic  

 

௃൫݂ܦ݊ ∥ መ݂൯ = 2݊∫൫݂(ݔ)෣ ݃݋൯݈(ݔ)݂− ௙(௫)෣

௙(௫)
 which  fits asymptotically a ݔ݀

chi-square distribution with k-degrees of freedom (Kullback,pp 97-102).Therefore 
these two statistics can also be used in some hypothesis tests alternatively. Note that  
for discrete cases integration operatorsare simply replaced by summation operators.  
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4. Applications 

 
First we assume a binomial distribution whose parameter (success probability) 

p is under consideration.Based on sample information (n=100), the sample 
proportion̂݌ has been estimated.Here we study three cases; 

 
i) ܪ଴:݌ = ݌:ଵܪݏݑݏݎ݁ݒ   0.25 ≠ 0.25 
ii)ܪ଴:݌ = ݌:ଵܪݏݑݏݎ݁ݒ   0.50 ≠ 0.50 
iii)ܪ଴:݌ = :ଵܪݏݑݏݎ݁ݒ   0.75 ݌ ≠ 0.75 
 
If we suppose the population mean is 0.25 and consider various sample 

proportions between 0 and 1, we may get the following diagram for classical Z-square 
scores, Kullback-Leibler  divergences calculated for (݌଴,  The horizontal scale .(̂݌
represents  sample proportion. 

 

 
 
Figure 4.1. Kullback-Leibler divergence and classical Z-square scores for 
testing the proportion of binomial distribution 
 
It should be noted that Z-square is computed by thefollowing  formula: 
 

ܼଶ = ൬
̂݌ − (̂݌)ܧ
(̂݌)ܵ ൰

ଶ

=

⎝

⎛ ̂݌ − ଴݌

ට௣బ(ଵି௣బ)
௡ ⎠

⎞

ଶ
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The square of a standard normal variable fits a chi-square distribution with 
one-degree of freedom. 2nI(X,Y) also follows achi-square distribution with 1-degree 
of freedom.We simply have calculated these two  statistics to show that they behave 
similarly. Note that Pearson linear correlation coefficient between these two statistics 
is 0.923 for this example. Finally we also note that there is not a special reason for 
prefering 2nI(X,Y) rather than nJ(X,Y),since both of them produce very similar 
results.For p=0.50 and for p=0.75 we have observed very similar results. Linear 
correlation coefficients are found to be 0.918 and 0.946 respectively.  We observe that 
generally2nI(X,Y) is more sensitive than ordinary Z-square statisticespecially in case of 
extreme deviations from the mean.  Therefore we can say that for larger deviations 
from the mean, the power of  2nI(X,Y) (or nJ(X,Y)) test is higher.    

 
As a second illustration, we have considered standard normal distribution. The 

horizontal axis of the next diagram represents  populationmean. By assuming the level 
of significance 0.05and performing a one sided test for simplicity, we have produced 
the following diagram: 

 

 
 
Figure 4.2. P-values for Kullback-Leibler and Jeffreys divergences and the 
power function of a standard normal variate (alpha=0.05) 

 
Here Prob(KL) and Prob(J) are p-values for Kullback-Leibler and Jeffreys 

divergences under the null hypothesis that the mean is zero. It is important to note 
that as the power of a classical Z-test increases, p-values for Kullback-Leibler and 
Jeffreys divergences decrease also;which  isa phenomenon that we expect to observe 
intuitively. Because as the power increases, we are more confident in rejecting a null 
hypothesis.  

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6

Power

Prob(KL)

Prob(J)



86                 Journal of Administrative Sciences and Policy Studies, Vol. 3(2), December 2015 
 
 

Similarly as p-values decrease, we are more confident to reject a null-
hypothesis. We have repeated this procedure twice more for two normal distributions 
having a common mean of zero and standard deviations 2 and 5 respectively. We have 
observed a similar tendency.   

 
Finally,we  havestudied the sampling properties of  2nI(X,Y)  and nJ(X,Y) 

statistics in testing the parameter of a Poisson distribution. We have  simulated 12 
different scenarios from Possion distributions by Microsoft Excel. Lambda values 
have been taken to be 1,5,15 and 30. We have observed samples consisting of 30, 50 
and 100 items. Then we have repeated these experiments 1000 times to get a better 
understanding of sampling propertiesof  classical Z-square, 2nI(X,Y)  and nJ(X,Y) 
statistics. Z-square statistic is calculated by the following: 

ܼଶ = ቆ
መߣ − (መߣ)ܧ

(መߣ)ݎ݋ݎݎܧ.݀ݐܵ
ቇ
ଶ

= ቆ
መߣ − ߣ
ඥߣ/݊

ቇ
ଶ

 

 
 2nI(X,Y)  and nJ(X,Y) are calculated by (3.4.9)  and (3.4.10). ߣଵand ߣଶ are 

population and sample means, respectively. The following  summarizesthe results of  
1000 different simulations. 

 
Simulation  lambda sample size Average Z-square Average2nI(X,Y) Average nJ(X,Y) 
1 1 30 0.948 0.974 0.963 
2 1 50 0.989 1.001 0.995 
3 1 100 1.045 1.054 1.051 
4 5 30 1.121 1.106 1.109 
5 5 50 0.958 0.957 0.957 
6 5 100 1.027 1.023 1.023 
7 15 30 0.948 0.955 0.953 
8 15 50 0,992 0.991 0.991 
9 15 100 1.16 1.159 1.159 
10 30 30 0.984 0.988 0.987 
11 30 50 0.96 0.961 0.961 
12 30 100 1.021 1.021 1.021 
 

Table 4.1. Avareges of three test statistics 
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The following table  suggests that  there is no significant difference between 
the coefficients of variations ofall the three statistics. 

 

Simulation Coef. of variation(Z-square) 
Coef.of 

variation(2nI(X,Y)) Coef. of variation(nJ(X,Y) 
1 1.481 1.499 1.472 
2 1.503 1.502 1.489 
3 1.368 1.376 1.368 
4 1.332 1.32 1.319 
5 1.401 1.404 1.401 
6 1.346 1.337 1.339 
7 1,432 1.456 1.449 
8 1.466 1.463 1.463 
9 1.368 1.367 1.367 
10 1.451 1.467 1.462 
11 1.522 1.526 1.525 
12 1.397 1.397 1.397 

 
Table 4.2. Coefficients of variations of three test statistics 

 
It should be noted that all these three statistics are highly and positively 

correlated. For all 12 simulations,the minimum correlation is found to be 0.944, 
whereas the maximum correlation is 0.999. Again this tendency can be investigated by 
Table 3. 

 
 
 

Correlation between 
Z-square and 2nI(X,Y) 

Correlation between 
Z-square and nJ(X,Y) 

Correlation between 
2nI(X,Y) and nJ(X,Y) 

1 0.944 0.968 0.996 
2 0.966 0.981 0.997 
3 0.984 0.991 0.999 
4 0.989 0.993 0.999 
5 0.994 0.996 0.999 
6 0.997 0.998 0.999 
7 0.996 0.998 0.999 
8 0.997 0.998 0.999 
9 0.998 0.999 0.999 
10 0.998 0.999 0.999 
11 0.998 0.999 0.999 
12 0.999 0.999 0.999 

 

Table 4.3.Correlations 
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Finally, we give frequency distributions of these three statistics for the case n=100 and 
ߣ = 30. 
 

 
 

Figure 4.3. Frequency Distribution of Z-square 
 

 
 

Figure 4.4. Frequency distribution of 2nI(X,Y) 
 

 
 

Figure 4.5. Frequency distribution of nJ(X,Y) 
 
Obviously, all three figures suggest that all of the three statistics fit somechi-square 
distributions. 
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Discussion 
 
 For larger sample sizes, multinomial distributions can be approximated well 

by multivariate normal distributions.  The measures of uncertainty or entropy; in 
discrete cases; depend on either class frequencies or some functional forms of class 
frequencies arising from multinomial distributions. Therefore the connection between 
entropy statistics and normality seems straightforward by multivariate central limit 
theoremsfor larger sample sizes. For a review on asymptotic normality of entropy 
measures, one can refer to Esteban & Morales (1995), Pardo (2006) and Zhang (2013).  

 
On the other hand, relative entropy statistics may also be used in goodness of 

fit testing as well as classical test statistics like Z scores, Z-square scores and classical 
chi-square statistics. We have observed that in testing any claim on population 
proportion of binomial distribution, Kullback-Leibler and Jeffreys test statistics have 
produced consistent results with those of classical Z and Z-square statistics. In 
addition, we have observed that the power of Kullback-Leibler and Jeffreys test 
statistics are higher especially in case of extreme deviations from the null 
hypothesis.Secondly, we have observed that Kullback-Leibler and Jeffreys formalism 
is totally in agreement with the basic concepts of classical hypothesis testing 
methodology like p-values, power of a test, etc.  Then,we have observed thatrelative 
entropy statisticsfit some chi-square distributions asymptotically.As a final illustration, 
under different assumptions on the parameter of Poisson distribution and sample size, 
we have applied these two statistics in testing the mean of a Poisson distribution to 
check their asymptotic nature. These two statistics have behaved like ordinary chi-
square statistics.  

 
The general trend in literature is a measure-theoretical approach on entropy 

and relative entropy issues. Yet Kullback-Leibler and Jeffreysdivergences are based on 
classical likelihood methodology.Therefore our final emphasis is on the existence of a 
larger set of statistical testing problems which can alternatively be studied by relative 
entropy methods. 
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